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Multicomputers consisting of off-the-shelf computers connected by commercial high-speed networks form 
an economically attractive computing platform for a large class of applications. However, while high- 
speed networks are fairly widely available (e.g. HIPPI and ATM), many computer systems have problems 
delivering this high bandwidth to the applications, thus limiting the class of applications that can be supported 
by multicomputers. The Gigabit Nectar project developed a network interface architecture that supports 
efficient high-bandwidth end-end communication. This architecture has been implemented for workstations 
(DEC Alpha) and distributed-memory systems (iWarp) and has been deployed in the Gigabit Nectar testbed. 
This report describes the Nectar network interface and its implementation and performance, and summarizes 
our application experience in the testbed. 

This research was supported by the Defense Advanced Research Projects Agency/CSTO monitored by the Space and Naval Warfare 
Systems Command under contract N00039-93-C-0152. 
The views and conclusions contained in this document are those of the author and should not be interpreted as representing the 
official policies, either expressed or implied, of the Defense Advanced Research Agency or the U.S. Government 

DISTRIBUTION STA~TEMENT A 

Approved for public release; 
Distribution Unlimited 



Keywords: High-speed networking, Host-Network interfaces, protocol implementation 



1 Introduction 

Recent advances in network technology have made it feasible to build high-speed networks using links 
operating at several 100s of Mbit/second. HIPPI networks based on the ANSI High-Performance Parallel 
Interface (HIPPI) protocol [1] are an example. HIPPI supports a data rate of 800 Mbit/second or 1.6 
Gbit/second and almost all commercially available supercomputers have a HIPPI interface. As a result, 
HIPPI networks have become popular in supercomputing centers. In addition to HIPPI, there are a number 
of high-speed network standards in use, including ATM (Asynchronous Transfer Mode) [18] and Fibre 
Channel [2]. 

As network speeds increase, it is important that host interface speeds increase proportionally, so that 
applications can benefit from the increased network performance. For bulk data transfer over high-speed 
networks, the sending and receiving hosts typically form the bottleneck, and it is important to minimize 
the communication overhead to achieve high application-level throughput. The communication cost can 
be broken up in per-packet and per-byte costs. The per-packet cost can be optimized [14, 44, 11], and for 
large packets, this overhead is amortized over a lot of data. However, the per-byte cost is not reduced by 
increasing the packet size. Moreover, the per-byte cost depends strongly on the memory bandwidth, which 
over time has not increased as quickly as CPU speed. As a result, it is mainly the per-byte costs that make 
high speed communication over networks expensive and that ultimately limit throughput as the network 
bandwidth increases. 

We have designed a host-network interface architecture optimized to achieve high application-to-application 
throughput for applications using the socket application programming interface (API) and the internet com- 
munication protocols. Our interface architecture is based on a Communication Accelerator Block (CAB) 
that provides support for key communication operations. The CAB is a network interface architecture that 
can be used for a wide range of hosts, as opposed to an implementation for a specific host. Two CAB 
implementations for HIPPI networks have been built by Network Systems Corporation (NSC), our compet- 
itively selected industrial partner. The first implementation is for the iWarp parallel machine [6] and the 
other one is for the DEC workstation using the Turbochannel bus [19]. The interfaces have been used in the 
Gigabit Nectar testbed at Carnegie Mellon University [38]. The testbed is used to distribute large scientific 
applications across a variety of computer systems connected by a high-speed network. 

The remainder of this report is organized as follows. We first present the hardware and software 
architecture of the CAB-based interface (Section 2). We then describe the implementation of the workstation 
(Section 3) and iWarp (Section 4) host interfaces and discuss their performance. Finally, we discuss some 
of the applications that used the Gigabit Nectar interfaces in Section 5. 

2 The Host-Network Interface Architecture 

Many papers have been published that report measurements of the overheads associated with communicating 
over networks [12, 14, 24, 34, 39, 44]. Even though it is difficult to compare these results because the 
measurements are made for different architectures, protocols, communication interfaces, and benchmarks, 
there is a common pattern: there is no single source of overhead. As a result, optimizations have to consider 
the entire host interface and not just a single operation. 

In the remainder of this section we discuss how we reduce communication overhead for applications that 
use BSD sockets and internet protocols, and how the CAB architecture supports these optimizations. Our 
research focuses on a widely used API (sockets) because it provides application portability and on standard 
communication protocols (TCP and UDP over IP) because it gives interoperability with other computer 
systems. At the end of the section we look at the effect of using different APIs and protocols. 
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Figure 1: Dataflow in (a) a traditional network interface, (b) a network interface with outboard buffering 
and (c) a network interface using DMA 

2.1    Optimizing communication 

The time spent on sending and receiving data is distributed over several operations including per-packet 
operations (protocol processing, interrupt handling, buffer management), and per-byte operations (copying 
data, checksumming). As networks get faster, data copying and checksumming become the dominating 
overheads, both because the other overheads are amortized over larger packets and because per-byte opera- 
tions stress a critical resource (the memory bus), so we first look at per-byte operations. Figure 1(a) shows 
the dataflow when sending a message using a traditional host interface; receives follow the inverse path. 
The data is first copied from the user address space to kernel buffers. This copy is needed to implement the 
copy semantics of the socket interface: when the send call returns, the application can safely overwrite the 
data. The next per-byte operation is the TCP or UDP checksum calculation (dashed line), and finally, the 
data is copied to the network device. This adds up to a total of five bus transfers for every word sent. On 
some hosts there is an additional CPU copy to move the data between "system buffers" and "device buffers", 
which results in two more bus transfers. 

We can reduce the number of bus transfers by moving the system buffers that are used to buffer the data 
outboard, as is shown in Figure 1(b). The checksum is calculated while the data is copied. The number of 
data transfers has been reduced to two. This interface corresponds to the "WITLESS" interface proposed 
by Van Jacobson [26,17]. Figure 1 (c) shows how the number of data transfers can be further reduced to one 
by using DMA for the data transfer between host memory and the buffers on the CAB. This is the minimum 
number with the socket interface. Checksumming is still done while copying the data, i.e. checksumming 
is done in hardware. Besides reducing the load on the bus, DMA has the advantage that it allows the use of 
burst transfers. This is necessary to get good throughput on today's high-speed I/O busses. 

The per-packet operations include interrupt handling, TCP and IP protocol processing, and buffer man- 
agement. Protocol processing is often held responsible for limiting communication throughput. Measure- 
ments for optimized protocol implementation show that the combined cost of protocol processing on the 
send and receive side can be as low as 200 instructions [14]. Moreover, moving these tasks outboard can 
be very complex, so they are performed by the host. Interactions between the host and the network adapter 
require accesses across the I/O bus and synchronization (e.g. interrupts). Since both are typically quite 
expensive, the CAB architecture minimizes the number of host-adapter interactions. For each operation the 
host requests from the CAB, it can specify whether an interrupt is needed when the operation is finished. 
This convention allows the host to limit the number of interrupts to one per user write on transmit, and at 
most one per packet and one per user read on receive. 



Figure 2: CAB block diagram 

2.2   Adapter architecture 

Figure 2 shows a block diagram of a Communication Acceleration Block (CAB) that supports the opti- 
mizations discussed above. It consists of a transmit and a receive half. The core of each half is a memory 
used for outboard buffering of packets (network memory). Each memory has two ports, each running at 
100 MByte/second. Data is transferred between host memory and network memory using System DMA 
(SDMA) and between network memory and the network using Media DMA (MDMA). The SDMA engines 
have a scatter/gather capability so they can collect (distribute) the packet header and data from (to) different 
buffers and user data from (to) multiple VM pages that are not adjacent in memory. The register file is used 
to queue host requests and return CAB responses. The host interface implements the bus protocol for a 
specific I/O bus, in our case the Turbochannel. 

The most natural place to calculate the checksum is while the data is transferred to or from the network. 
This is however not possible on transmit since TCP and UDP place the checksum in the header of the packet. 
As a result, the transmit checksum is calculated when the data flows into network memory, and it is placed 
in the header by the CAB in a location that is specified by the host as part of the SDMA request. On receive, 
the checksum is calculated when the data flows from the network into network memory, so that it is available 
to the host as soon as the message is available. Although this organization requires two checksum engines 
instead of one, it is desirable since it allows hosts to process packets as soon as they are received. 

Media access control is performed by hardware on the CAB, under control of the host. This component 
of the CAB is network-specific. Our implementation is for HIPPI [21]. The simplest MAC algorithm for 
a switch-based network is to send packets in FIFO order, but this does not make good use of the network 
bandwidth because of Head of Line (HOL) blocking. Analysis shows that one can utilize at most 58% of the 
network bandwidth, assuming random traffic [23, 33]. The CAB uses multiple "logical channels", queues 
of packets with different destinations, to get around this problem [47]. 

2.3   Host view 

Several features of the CAB have an impact on the structure of the networking software. First, to insure full 
bandwidth to the media, packets must start on a page boundary in CAB memory. This, together with the 
fact that checksum calculation for internet packet transmissions is performed during the transfer into CAB 
memory, dictates that individual packets are fully formed when they are transferred to the CAB. 

To illustrate how host software interacts with the CAB hardware in normal usage, we present a walk- 
through of a typical send and receive (with copy semantics). To handle a send, the system first examines 
the size of the message and other factors and determines how many packets will be needed on the media. It 
then creates the headers in kernel space and issues SDMA requests to the CAB, one per packet. The CAB 
transfers the data from the user's address space to the CAB network memory using DMA. In most cases, i.e. 



if the TCP window is open, an MDMA request to perform the actual media transfer can be issued at the same 
time, freeing the processor from any further involvement with individual packets. Only the final packet's 
SDMA request needs to be flagged to interrupt the host upon completion, so that the user process can be 
scheduled. No interrupt is needed to flag the end of MDMA of TCP packets, since the TCP acknowledgment 
will confirm that the data was sent. 

Upon receiving a packet from the network, the CAB automatically DMAs the first L words of the packet 
into auto-DMA buffers, i.e. preallocated buffers in host memory. The value L can be selected by the host. 
The CAB then interrupts the host, which performs protocol processing. For TCP and UDP, only the packet's 
header needs to be examined as the data checksum has already been calculated by the hardware. The packet 
is then logically queued for the appropriate user process. A user receive is handled by issuing one or more 
SDMA operations to copy the data out of network memory into user buffers. The last SDMA operation is 
flagged to generate an interrupt upon completion so that the user process can be scheduled. 

2.4    Host interface taxonomy 

BSD sockets and internet protocols are only one of many ways in which applications can communicate over 
networks. [46] presents a taxonomy of host interfaces as a function of three parameters: the API to the 
application (copy or share semantics), the characteristics of the transport-level checksum (placed in header 
or in trailer), and the architecture of the adapter. The latter covers data movement support (programmed 
I/O versus DMA), data checksumming support, and nature of the data buffering (outboard buffering, no 
buffering, or single packet buffering that allows insertion of a checksum in the header). The paper [46] 
shows how the minimum number of bus transfers that are performed as part of an I/O operation is a direct 
function of these three host interface features. 

Table 1 (a) summarizes the results: its entries list the nature of the data accesses that have to be performed 
for the different host interface classes. The columns represent different adapter architectures and the rows the 
API and checksum options. The types of data accesses are: programmed I/O (PIO), direct memory access 
(DMA), and memory-memory copy (COPY), all of which can be combined with a checksum calculation 
(PIO_C, DMA_C, and COPY_C), and checksum calculation (Read_C). 

As a first approximation, the efficiency of a network interface can be characterized by the number of 
times the data has to cross the memory bus. Table 1(b) shows how this number ranges from one (white) to 
four (black) for the interfaces in Table 1(a). The most efficient interfaces have the data cross the memory 
bus once: they perform one copy of the data using DMA and the checksum calculation takes place during 
this transfer. Some interfaces require two or three crossings, either because a separate read of the data is 
needed to calculate the checksum, or because programmed I/O is used, or both. Finally, some interfaces 
require four crossings because data has to be copied twice. Note that in some cases, a "logical" copy can 
be used for the memory-memory copy, i.e. page remapping or copy on write; this reduces the number of 
crossings shown in Table 1. 

The rows and columns in Table 1 clearly show some of the tradeoff in the area of host interface design. 
First, in many scenarios (rows in the table) it is possible to improve performance by making the adapter 
hardware more complex (more left to right). Second, for many adapter architectures (columns in the table), 
applications that use an API with copy semantics will see less efficient communication than applications that 
use an API based on shared buffers, which is harder to use. Finally, the CAB architecture (last column) is 
the most complex architecture (highest degree of hardware support), but it is also the only architecture that 
supports all API/protocol combinations with a single DMA transfer across the memory bus (Figure lc). 
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No Outboard Buffering Packet Buffering Outboard Buffering 

API Checksum PIO DMA 
DMA + 

Checksum PIO DMA 
DMA + 

Checksum PIO DMA 
DMA + 

Checksum 

Copy Header ^Es HaH IH^I^I ^^^^^^^^^8 2 2 1 

Copy Trailer ^^^E^^^l ■E^l 2 2 1 

Shared Header 11B5111H1 2 2 2 2 1 2 2 1 

Shared Trailer 2 2 1 2 2 1 2 2 1 

(b) Number of times data crosses the memory bus 

Table 1: Host interface taxonomy 

3   The workstation interface 

The CAB architecture was implemented using off-the-shelf components by NSC for DEC workstations with 
a Turbochannel I/O bus [19]. The workstation CAB uses a single memory for both incoming and outgoing 
packets and a single SDMA engine (Figure 3). Network memory is implemented using DRAM, and the 
DMA engines are controlled using a 29K microprocessor. The workstation CAB sits in a separate box that 
connects to a Turbochannel paddle card. While the CAB hardware is designed for bandwidths up to 300 
Mbit/second, the microcode currently limits throughput to about 200 Mbit/second (Section 3.3). 
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Figure 4: Software architecture 

3.1    A single-copy protocol stack for BSD 

To make efficient use of the CAB, data should be transferred directly from user space to CAB memory and 
vice-versa, and this model is different from that found in Berkeley Unix operating systems, where data is 
channeled through the system's network buffer pool [32]. The difference in the models, together with the 
restriction that data in CAB memory should be formatted into complete packets, means that decisions about 
partitioning of user data into packets must be made before the data is transferred out of user space. This 
requires that some of the functionality in the "layered" protocol stack be moved. 

There are many ways of doing this reorganization, but the least disruptive solution is to maintain the 
existing protocol stack structure and to pass data descriptors representing the data through the stack instead of 
kernel buffers holding the data. Formatting operations on data, i.e. packetization, are done "symbolically" on 
the descriptor and not by copying the data. All data-touching operations are combined into a single operation 
that is performed in the driver. Figure 4 shows the control flow (gray arrows) through an original and a 
modified stack: the black arrows show how the per-byte operations are moved to the driver and hardware. 
To move the checksum calculation, information about the checksum calculation is associated with the data 
descriptor for the packet, thus allowing the checksum to be set up or used in the transport layer, but calculated 
in the driver. To support this software organization, the network device driver has to provide routines to 
transfer packets between host and network memory, besides the traditional input and output routines. 
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3.2   Implementation in DEC OSF/1 

This software architecture was implemented in a Net2 BSD protocol stack, as it exists in DEC OSF/1 v2.0. 
We give a brief overview of the implementation. More details can be found in [27]. 

The single copy path can be added as a separate stack, or it can be merged with the traditional multi-copy 
stack (Figure 5). Adding the single-copy path as a second, separate stack (Figure 5a), is more complicated 
since it raises the issue of what stack to use for each read/write and each incoming packet, and it also 
complicates operations that involve both stacks, such as IP routing. For this reason, we added a single-copy 
path to the existing protocol stack (Figure 5b). 

With a single stack implementation, data can flow through the protocol stack in three different formats: 
data in kernel buffers, data in user space, and data in outboard buffers. In our implementation, all data 
formats are represented by mbufs, with the latter two formats relying on the external mbuf mechanism that 
was added to 4.3 BSD. External mbufs make it possible to store data in buffers that are managed separately 
from the regular pool of kernel mbufs. We created two new mbuf types: one to represent data stored in the 
user's address space (MJUIO mbuf) and another to represent data stored in network memory (M_WCAB 
mbuf). The new mbuf types include new data structures holding information on the checksum location, the 
task that issued the read or write (used for notification), and location of data in the user's address space or 
the outboard memory. 

An important result of working inside the mbuf framework is that most of the changes related to copy 
optimization are hidden inside the macros and functions that operate on mbufs, and few changes had to be 
made to the transport and network layers in the stack. The changes to the stack were limited to: 

• The socket code was changed to create MJJIO mbufs (transmit) and to recognize MLWCAB mbufs 
(receive). 

• In the TCP layer, the code that copies a packet's worth of data into an mbuf chain to be handed to the 
driver was replaced by code that searches the transmit queue for a block of data at a specific offset. 
Note that this search routine has to operate on a list that includes mbufs of different types, including 
MJWCAB mbufs in the case of retransmit. 

• The checksum routines were modified to use outboard checksumming. On transmit, the checksum 
routines includes information about the location and offset of the checksum in the packet descriptor so 
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that the CAB can calculate the checksum and insert it in the TCP/IP header. On receive, the checksum 
routine uses the checksum that was calculated by the CAB hardware, descriptor 

An alternative to using the existing mbuf framework would have been to defined a new data structure 
to represent the different data formats. However, this would have required more substantial changes to the 
code. 

The CAB uses DMA to achieve good efficiency on the data transfer between the network memory and 
host memory. DMA devices typically transfer data between kernel buffers and the device, but with the 
single-copy stack, data is transferred directly between user space and the device. This means that user 
buffers have to be pinned and remapped before they can be accessed by the CAB DMA engines. As a result 
of this overhead, it is more efficient to use the original stack for small reads and writes, since it DMAs to 
and from kernel buffers, which is more efficient, and also allows TCP to coalesce data. 

Besides user-level applications communicating through the CAB, we also have to consider the following 
scenarios: 

• Many in-kernel applications make use of the network. They include I/O intensive applications such as 
file servers, and applications with low bandwidth requirements such as ICMP They use TCP or UDP 
over IP, or raw IP. 

• Hosts often have network interfaces other than the CAB, and these interfaces typically do not support 
single-copy communication. 

Figure 6 shows the different paths through the protocol stack. The single-copy path described in this 
section is shown in black. Given the nature of the changes to the protocol stack, in-kernel applications 
communicating through existing interfaces are not affected (thick gray arrow in Figure 6) since they use 
"regular" mbufs, which are still supported. 

However, in-kernel applications communicating through the CAB and applications using the socket 
interface communicating through existing interface might create problems (thin arrows in Figure 6) as a 
result of the new mbuf types. Making these paths work should not require modifying in-kernel applications 
or drivers for existing devices.   Not only would this significantly increase the amount of code that has 



to be modified and maintained, but in many cases it is impossible because applications are distributed in 
binary form only, i.e. even recompilation is not an option. Interoperability of the different code segments 
is maintained by doing transformations on the data representation at the module boundaries. For example, 
outboard data (M_WCAB mbuf) is DMAed into kernel buffers (regular mbufs) before it is passed into a file 
server. 

3.3    Performance 

We compare the performance of a single-copy stack with that of an unmodified stack. 

3.3.1    Design of experiments 

The single-copy stack was implemented in an OSF/1 v2.0 kernel running on a DEC Alpha 3000/400 with 64 
MByte of memory. The OSF/1 protocol stack is based on Net2 BSD and also supports TCP window scaling 
[7]. The network device used is the CAB [47] and the Maximum Transmission Unit (MTU) is 64 KBytes. 
For all tests, the TCP window size is 512 KBytes. The implementation of the single-copy stack currently 
supports user-level and in-kernel applications communicating through Ethernet and user-level applications 
communicating through the CAB. 

Which protocol stack is used will affect the efficiency of the communication, i.e. how much overhead 
does communication introduce, and depending on the specific network adapter and host, the stack might 
also have an impact on the throughput. For this reason, we will use both throughput and system utilization 
as performance measures. Throughput is measured using ttcp, which measures user process to user process 
throughput. Estimating the utilization accurately is more difficult. The CPU utilization of ttcp is not a good 
indicator, since certain communication overheads (e.g. ACK handling and any transmits it triggers) are not 
charged to the process for which the action is performed {ttcp in our case), but to the process that happens 
to be active when the interrupt takes place. To solve this problem, we ran a compute-bound low-priority 
process called Mil at the same time as ttcp on both the sending and the receiving node. The util program is 
started up and killed by ttcp and uses any cycles that are not used by ttcp, i.e. it can be viewed as a user 
program doing useful work while communication is taking place. When calculating the utilization due to 
communication, we charge any system time accumulated by util to ttcp. 

When using this method, we discovered that the sum of the CPU times charged to util and ttcp does 
not add up to the elapsed time of the tests. Consistently, about 7-8% of the time is unaccounted for. This 
time is likely spent in various background processes, including the idle process, and we will assume that it 
should charged proportionally to util and ttcp, so our estimate for CPU utilization to support communication 
is calculated as: 

tccp(user) + ttcp(sys) + util(svs) 
utilization — 

tccp{user) + ttcp(sys) + util(sys) + util {us er) 

3.3.2    Experimental results 

Figures 7(a) and (b) show the throughput and utilization as a function of the read/write size. The utilization 
results are for the sender, but the results on the receiver are similar. Figure 7(a) includes the throughput 
for raw HIPPI reads and writes. The raw HIPPI throughput test generates well-formed packets that can be 
handled efficiently by the microcode, so the raw HIPPI results represent the highest throughput one can 
expect for a given packet size. Note that the measurements for the modified stack always use the single-copy 
path (i.e. it does not fall back to "regular" path for small writes as described in Section 3.2) and does not 
coalesce the MJUIO mbufs generated by multiple writes into a single packet. 
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Figure 7: Throughput, utilization and efficiency as a function of read/write size 

The throughput results show that for small writes (16 KByte and less) the original stack provides a higher 
throughput than the single-copy stack. This is a result both of a higher efficiency (see below) and the lack of 
coalescing in the single-copy stack. For larger reads and writes the modified stack has a higher throughput: 
the peak throughput is 172 Mbit/second for the modified stack versus 110 Mbit/second for the unmodified 
stack. The utilization measurements shows that the modified stack uses fewer CPU cycles to provide the 
higher throughput. The unmodified stack uses over 90% of the CPU, i.e. data copying and checksumming 
by the CPU limits throughput, while the modified uses only 25% of the CPU, i.e. even at 170 Mbit/second 
it still leaves many CPU cycles for use by applications. 

To better evaluate the overhead we define the communication efficiency as how many Mbit/second of 
communication can be supported if the full CPU were utilized for communication, i.e. the ratio of the 
throughput and efficiency graphs in Figure 7(a) and (b). Figure 7(c) shows the efficiency for the both 
implementations of the stack. We see that the single-copy stack is more than five times more efficient than 
the unmodified stack for large writes, but less efficient for small writes. The cross over point is between 
8 and 16 KByte, indicating that the single-copy stack will pay off, i.e. be more efficient, for writes of 16 
KByte and higher. Note that the efficiency is a rough estimate of the communication throughput that the 
host can sustain, ignoring limitations imposed by the network or the adapter. 
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Figure 8: Connection of HIPPI network interface to iWarp distributed-memory system 

4    The iWarp interface 

The most powerful supercomputers today are distributed-memory systems that link a large number of 
workstation-class processors together using a high performance interconnect. Their success can be attributed 
to the fact that they are inherently scalable and provide relatively inexpensive computing cycles compared 
with traditional supercomputers. However, while distributed-memory systems are effective compute engines, 
network I/O has proven to be a problem. The reason is that network I/O is typically supported through an 
I/O node with the same computational power of one of the compute nodes, i.e. a workstation-class node has 
to support network I/O for a supercomputer. The I/O architecture used for the HIPPI interface for the iWarp 
system [6] relies on a careful distribution of the network functions, e.g. protocol processing, data formatting 
and connection management, between the distributed-memory system and the network interface to achieve 
high-bandwidth network I/O. 

4.1    I/O architecture 

Distributed-memory systems communicate over a network through a network interface node connected both 
to the external network (e.g. HIPPI) and the internal interconnect of the system (Figure 8). The role of 
the network interface is to forward data between the internal and external network. The sequential network 
interface tends to become a bottleneck. 

In the iWarp HIPPI interface [45], these problems are addressed by mapping each task onto the subsystem 
that is the most appropriate for it (network interface or distributed memory system): 

1. Communication protocol processing (transport and network layers) generally does not parallelize well. 
We map this task to the network interface, and use the CAB architecture to provide hardware support 
for time-critical tasks (Section 4.2). 

2. Managing connections between the distributed-memory system and the outside world through the 
network interface translates into a problem of allocating resources in the system (e.g. link bandwidth, 
buffer space,..). This task is mapped onto the streams software (Section 4.3). 

3. Data sent or received over the network is typically distributed over the private memories of the nodes. 
This means that the communication software has to perform scatter or gather operations as part of the 
I/O operation [20]. We map the task of combining/distributing the data onto the distributed-memory 
system (Section 4.4). 
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Figure 10: iWarp HIPPI interface architecture 

Note that these functions correspond to the transport, network, session and presentation layers of the OSI 
network model (Figure 9). 

Our implementation shows that this architecture is very effective. We have measured sustained through- 
puts of 55 Mbyte/second for simple applications (e.g. displaying images on a HIPPI framebuffer), and 40 
Mbyte/second for complex applications that send data to the PSC Cray C90. 

4.2   iWarpCAB 

Since protocol processing does not parallelize well, this task is performed by the network interface. Figure 
10 shows the architecture of the iWarp-HIPPI network interface, or HIPPI Interface Board (HIB). It consists 
of two iWarp processor and a CAB. The iWarp processors link the network interface into the iWarp torus 
and perform protocol processing, while the CAB provides support for critical protocol processing operation: 
data transfer, checksumming and buffering (Section 2). The operation of the network interface is similar to 
that of a sequential system, except that the data source and sink is the distributed-memory system, and not 
the memory of the iWarp processors on the interface. 

Other distributed-memory systems also rely on the network interface to perform protocol processing. 
While we run a relatively standard TCP/IP implementation on the network interface, others use outboard 
protocol processing (e.g. [48]), or a customized protocol implementation relying heavily on hardware 
support (e.g. [43]). 

The HIB architecture has two iWarp processors instead of one because of data bandwidth requirements. 
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The critical resource in the architecture is the memory bus of the iWarp processors since all data that is 
sent/received has to flow over it, and the bus is also used for program and local data accesses. Using two 
iWarp processors instead of one doubles the bandwidth available for these operations from 160 KByte/sec 
to 320 KByte/sec. 

The main role of the staging memories in the architecture is to efficiently gather data coming from the 
different iWarp buses (transmit) or to scatter data (receive). They are implemented as dual-port RAMs with 
a bandwidth of 160 MByte/second on the iWarp side and 100 MByte/second on the network side. Since the 
DMA engines on the iWarp chip interleave the data on the iWarp memory bus in small blocks (8 bytes), it is 
necessary to use static RAM to achieve high throughput. As a result, the staging memories are small: 128 
KByte for each direction. 

The implementation of the UDP/IP and TCP/IP protocol stack for iWarp differs from a traditional work- 
station implementation in a number of ways. The most obvious difference is that processing is distributed 
over two processors, so the transmit and receive components of TCP/IP have to be separated. A shared 
memory (Figure 10) allows the two components to keep a consistent protocol state. Second, the protocol 
stack has to be modified to make use of the outboard storage and checksum calculation. These changes are 
similar to those discussed in Section 3.1, except that iWarp runs a light-weight runtime system (instead of 
Unix) and interoperability with existing devices and applications is not a concern. 

The iWarp CAB can send data at 75 MByte/sec for 64 KByte packets. Measurements for raw HIPPI and 
UDP over IP give the same throughput results, i.e. the UDP/IP implementation is very efficient. The main 
difference between the two cases is that the idle time on the network interface node is lower in the UDP case 
(40%-56%) than in the raw HIPPI case (74%-79%). The current bottleneck in the system is the microcode 
on the CAB: it limits us to sending about 3000 packets per second. 

4.3    The streams package 

The transfer of data between the application on the system and the network is a two phase process. In a first 
phase (transmit), data is transferred from the system to the network interface, and in the second phase, the data 
is sent over the network. The data transfer over the network is controlled by the communication protocols, as 
described above. Managing the first phase is mainly a resource management problem: both the distributed- 
memory system and the network interface have limited resources (memory, link bandwidth,..), and how they 
are allocated to support I/O will have a significant impact-on performance. On sequential systems, this task 
is traditionally performed by the operating system. However, applications on distributed-memory systems 
can have very different I/O requirements. They can differ with respect to the distribution of the data, the use 
of communication resources inside the distributed-memory system, and choice of communication library. 
For this reason, a single solution built into the operating system or supported by a general library will not 
be able to support I/O efficiently for a wide range of applications. 

For iWarp, communication between the distributed memory system and the HIB is supported using the 
streams package. It distinguishes between tasks that need to be performed on the distributed-memory system 
and tasks that need to be performed on the network interface [22]: 

• The Streams Manager on the network interface is responsible for efficient data movement from the 
interconnect of the distributed-memory to the network for multiple streams. A stream is a connection 
from the application on the distributed-memory system to another system connected to the external 
HIPPI network. The streams manager is also responsible for invoking the appropriate communication 
protocols, which format and prepend headers to each packet. 

• The application on the distributed-memory system is responsible for distributing (or collecting) the 
data to (or from) the network interface using existing communication libraries.   This architecture 
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does not imply that each application has to provide the code to transfer data to and from the network 
interface. Rather, libraries can be built for common data distributions (Section 4.4). 

The components interact through a control interface and a data interface: 

• The data interface transfers data between the network interface and the application on the distributed 
memory system. The main parameters controlling data transfers are the data format (quantity and 
ordering if striping is used), and address information. 

• The control interface allows the application to instruct the network interface on how it should perform 
communication. Typical operations include opening or closing a connection, issuing an I/O operation, 
or inquiring about status. 

The streams package provides the flexibility needed to support application-specific I/O and a wide range 
of applications have used the package to communicate over HIPPI [22]. Examples include MRI medical 
image reconstruction, chemical flow sheeting, and real time video display. 

If the distributed-memory systems is programmed using a programming tool, such as a parallelizing 
compiler, that tool is in an ideal position to manage the I/O, e.g. select the right data movement libraries and 
insert calls to stream manager. The tool already manages the resources in the distributed-memory system 
based on an understanding of the characteristics of the application, and can optimize I/O operations internally 
(between the compute nodes) and externally (to the network interface) 

4.4   Data distribution 

To efficiently utilize the large number of processors in a distributed-memory computer, applications typically 
use data parallelism. Data is partitioned into equal-sized blocks, which are distributed across the processors, 
and each processor operates on the data that is assigned to it. Both the type and granularity of datapartitionings 
varies widely between application. As a result, I/O operations include an extensive scatter/gather operation 
that is application specific. The scatter/gather operation also has to deal with striping the data stream over 
multiple links, if the link speed over the internal interconnect is lower than that of the external network. 
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Figure 12: Performance of the Reshuffling Algorithm (left) and Throughput to HIB (right) 

Distributed-memory machines can deal with the data distribution in a number of ways. In a first approach, 
compute nodes send data to the interface independently and the data is sorted out and grouped by the interface. 
This approach is simple to implement, but even if the overhead for sending and receiving blocks to or from 
the internal interconnect is small, the interface will become a bottleneck for fine-grain data partitionings 
[20]. 

In the approach we selected [8], the distributed-memory system is responsible for the scatter/gather 
operation. On transmit, it constructs large messages and presents them to the interface in an efficient way, 
for example striped across multiple links. On receive, it distributes the data across the processors. This 
approach is attractive for two reasons. First, the network interface only has to deal with large blocks of data, 
independent from the data partitioning inside the system. This minimizes the cost on the network interface of 
exchanging data with the system. Second, distributed-memory machines typically support high-bandwidth 
inter-node communication, and since reshuffling parallelizes very well, many links can be used at the same 
time. As a result, the distributed-memory system can reshuffle data efficiently. A similar approach has been 
proposed for disk I/O, e.g. [5]. 

Figure 12 (left) shows the rate at which data can be reshuffled on an 8 by 8 iWarp system; the results 
are for the reshuffling of a block-cyclic distribution with a certain block size (x axis) to a distribution with 8 
KByte blocks, which is the optimal size for communication with the HIB. Even for very small block sizes, 
reshuffling can be performed at rates that far exceed HIPPI network rate (100 MByte/second). 

In a second experiment, data is transferred to the HIB, starting with the data mapped on the system using 
block-cyclic distributions with different block sizes. Figure 12 (right) shows the throughput both with and 
without reshuffling. We observe that when reshuffling is used, we can easily match the HIPPI bandwidth. 
For comparison, the curve labeled "streaming" shows the maximum throughput. It was obtained by having 
each node send the data blocks directly to the HIB, striped across 4 links, but ignoring the order of the data. 

5   Gigabit Nectar testbed 

The Gigabit Nectar iWarp and workstation interfaces were deployed in the Gigabit Nectar testbed (Figure 
13). The testbed connects computer system on the CMU campus and at the Pittsburgh Supercomputer Center 
(PSC) by a HIPPI network. The systems include an Intel iWarp and Paragon system and 24 DEC Alpha 
3000/400 workstations on the CMU campus, and a Cray C90 and Thinking Machines CM2 at PSC. The 
network consists of two local area HIPPI networks, one on the CMU campus and one at PSC, connected 
by a serial HIPPI link and by an experimental ATM-SONET link [25, 13]. The ATM-SONET link (HAS 
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Figure 13: The Gigabit Nectar testbed 

for HIPPI-ATM-SONET) was developed jointly with Bellcore. The testbed is being used for a variety of 
applications. 

5.1 Heterogeneous supercomputer applications 

A first class of applications that makes use of the testbed consists of applications that are distributed across 
a small number of supercomputers. Examples include a medical resonance imaging application [37] that 
uses the iWarp, C90 and Paragon systems, and a chemical flow sheeting application [15] that was distributed 
over the iWarp, C90 and CM2 systems. We include applications that use special purpose devices in the same 
category. An example is a video capture application that captures a stream of images, processes them on 
iWarp and displays them on a HIPPI framebuffer [49]. 

The use of heterogeneous systems makes it possible for each task in the application to run on the system 
for which it is best suited. This is for example the case for the chemical flow sheeting application which 
consists of a massively-parallel memory-intensive task (CM2), a highly parallel task (iWarp), and a scalar 
task (C90). 

Another important benefit of connecting heterogeneous systems with a high speed network is that it 
simplifies code reuse. Many applications, e.g. interdisciplinary applications, are constructed by combining 
existing programs. In many cases, these programs have been developed for different parallel systems, 
and porting all programs to the same system so they can be integrated would be a significant effort. A 
heterogeneous multicomputer makes it possible to avoid the porting step: each component executes on the 
platform for which it was developed and the components in the combined application use the network to 
exchange data. Since data sets are usually very large, the network must have a high bandwidth. 

5.2 Workstation cluster applications 

Workstation clusters (or "Network Of Workstations") are an attractive platform for many applications. The 
Nectar project [4, 30], the predecessor of Gigabit Nectar, started exploring issues in the areas of high-speed 
communication in switched-based LANs [44, 16] and support for application distribution [31]. This work 
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is being continued using the Gigabit Nectar cluster consisting of 24 Alpha workstations distributed across 
labs and offices. 

Applications that use the cluster include the NSF Grand Challenge applications on Environmental Mod- 
eling [29] and on Ground Motion Modeling. However, the focus of the Gigabit Nectar cluster has been 
on supporting research on programming tools for distributed computing. Implementing applications on 
a network-based multicomputer is a non-trivial effort, and programming tools that simplify that task are 
needed. In the context of the Nectar and Gigabit Nectar systems, we have demonstrated tools in three critical 
areas: monitoring tools that help the programmer understand the behavior of their application [10,9], support 
for data sharing across the network [35, 36], and load balancing tools that help in distributing work to make 
efficient use of the cycles on the nodes [51, 50, 41, 42, 40]. 

Recent research has focused on providing programming abstractions at a higher level than message 
passing. The Fx parallelizing FORTRAN compiler [30] supports both data and task parallelism, and, as a 
result, it can be used for a large number of application domains, including scientific computing and signal 
processing. Other efforts include the Dome distributed object library [3], which provides runtime support 
for load balancing and fault tolerance, and the DCABB environment [28] which supports distributed branch 
and bound algorithms. The Scotch parallel file system is also connected to Gigabit Nectar. 

6    Conclusion 

The Gigabit Nectar project demonstrated that by optimizing per-byte operations, it is possible to communi- 
cate over networks efficiently using standard communication protocols (internet protocols) and APIs (BSD 
sockets). For workstations we use outboard buffering and checksumming and a modified BSD protocol 
stack to achieve single copy communication, i.e. data is touched only once on its path from the application 
space to the network. For the distributed memory systems such as iWarp, we rely on the distributed memory 
system to create large contiguous blocks of data that can be handled efficiently by the network interface. 
Protocol processing is performed on the network interface using hardware support for per-byte operations, 
similar to that on the workstation interface. 

The workstation and iWarp interfaces were deployed in the Gigabit Nectar testbed and were used both 
in heterogeneous supercomputer and workstation cluster applications. One interesting result was that the 
presence of a high-speed network allowed us to quickly build several complex applications by combining 
application components that had been developed independently for different systems. Our workstation 
cluster results also show that a higher speed network allows us to run applications more effectively, i.e. to 
use more nodes and get better speedups. 
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